
Constraint-Based Physics With Real-Time

Object Slicing

Tommy A. Brosman IV
DigiPen Institute of Technology
tommy.brosman@gmail.com

April 2011

Abstract

This paper presents a method for slicing meshes suitable for real-time
simulation. The physics engine itself is also briefly covered, along with
some implementation details. A derivation of constraint-based dynamics
from D’Alembert’s principle of virtual work and variational principles is
also presented.

1 Previous Work

The physics engine itself is most similar to the one described in [Cat05], with
an iterative, local constraint solver. The additional fracturing code borrows
concepts from [Mil04] in that avoids relying on FEM methods for breaking and
re-meshing objects.

1

2 Constrained Dynamics

2.1 Concepts

The physical animation is accomplished using constraint-based methods. These
methods can be derived from classical mechanics, starting from Newtons equa-
tions and DAlemberts principle of virtual work.

According to Newtons equations, for a system in equilibrium, the total force
on each particle will disappear [Gol02]:

Fi = 0

Here, Fi is the total force for the ith particle in the system. The total work in
the system is written:

W =

∫ ∑
i

Fi · dri

Taking the variation of the work gives the virtual work:

δW =
∑
i

Fi · δri

Which is 0. Splitting F up into external (applied) and constraint forces:

δW =
∑
i

F
(c)
i · δri +

∑
i

F
(ext)
i · δri = 0

For rigid bodies, it is a necessary condition that the net virtual work is always 0.
As a result, when a system is in equilibrium, the virtual work of applied forces
also vanishes.

A simple positional velocity constraint can be derived using this concept. Given
some particle with position r(t), and a plane with normal n, the velocity of the
particle should be orthogonal to the normal (in other words, all motion is within
the plane):

n̂ · v(t) = 0

This is equivalent to constraining a particle to the plane with a virtual force:

F (c) · δr = 0

F (c) · dr
dt

= 0

F (c) · v = 0

Which illustrates that no work over time is equivalent to no power. Where the
constraint force is equal to some undetermined multiplier times the normal to
the plane:

F (c) = λn̂

2

2.2 Variational Principles

The variation of a variable is different than the variable itself (the displacement
over an infinitesimal amount of time vs. the actual position). Under general
conditions, it is also different from the total differential, (which by itself has no
direct physical interpretation, unlike a variation). Therefore,

F · r 6= F · δr

The equality between the variation of displacement and actual displacement can
be made because an infinitesimal amount of time is passing [Lan70].

δr =
dr

dt
dt = v dt

In the formulation of virtual work, both sides are divided by the infinitesimal
scalar quantity dt (0

dt = 0). This changes the equation from work (Joules)
to power (Watts). Note that this is different from taking the time derivative
directly, as the equation is already expressed in terms of a variation.

1

dt
(F (c) · δr) = F (c) · dr

dt
= F (c) · v

2.3 Geometric Constraints

Given some particle with position r(t), and a plane with normal n̂, an inequal-
ity constraint can be formulated to keep the particle to one side of the plane.
Geometrically, this is the implicit equation:

n̂ · (r − p) ≥ 0

Where p is some point in the plane. This is different from the earlier constraint
equation as the motion is now restricted to an affine plane (a plane that does
not necessarily pass through the origin) and expressed as an inequality. This
is a geometric constraint, specifically a contact constraint, and is the basis for
formulating contact constraint forces.

The scalar quantity n̂ · v(t) associated with the previous constraint is called
the closing velocity and can be used to classify whether a constraint is violated.
n̂ · v(t) < 0 corresponds to a potential collision (closing), n̂ · v(t) = 0 is a resting
contact (when the spatial constraint is also 0), and n̂ · v(t) > 0 is separating.
This quantity is the time derivative of the contact constraint:

d

dt
(n̂ · (r − p)) ≥ d

dt
0

n̂ · v ≥ 0

So for a contact constraint to be satisfied, it is a necessary (but not sufficient)
condition that the particle is either at rest or separating.

3

2.4 Generalized Scleronomic Constraints

Given some vector of linearly independent generalized coordinates q in a configu-
ration space [Sha01], an implicit inequality constraint (also called a ”one-sided”
constraint, [Sha05]) can be specified as:

f : Rn → R, a ∈ R
C(q) : f(q) ≥ a

Similarly, an equality constraint (two-sided) can be specified as:

C(q) : f(q) = a

Where a is a scalar. Both the above cases have only positional dependencies and
an implicit time dependence, making them scleronomic constraints [TM04, p.
238]. In both cases, to obtain the corresponding necessary velocity constraint,
a time derivative of both sides is computed:]

Ċ(q) :
d

dt
f(q) ≥ d

dt
a

Then using the chain rule, and the fact that the right-hand side is constant:

Ċ(q) :
df(q)

dq

dq

dt
≥ 0

Which is equivalent to:

Ċ(q) : ∇f · dq
dt
≥ 0

Which can be further generalized to:

Ċ(q) : (∇f)T
dq

dt
≥ 0

For vector valued constraints and systems with multiple scalar valued con-
straints, the initial constraint equation becomes:

F : Rn → Rm, a ∈ Rm

C(q) : F (q) ≥ a

This can be solved the same way as the scalar field equation by replacing (∇f)T

with the Jacobian matrix JF :

Ċ(q) : JF
dq

dt
≥ 0

In the case of the plane constraint, the normal vector is simply the transpose of
the Jacobian matrix [Cat09].

4

2.5 Lagrange’s Equations For Constrained Dynamics

Lagranges equations for systems containing holonomic (time-dependent posi-
tional) equality constraints [TM04, p. 249]:

fk(qj , t) = 0

L = T − U

Where L is the Lagrangian, consisting of the difference in kinetic energy T
and potential energy U , and each fk is a holonomic constraint equation. The
equation of motion is then written as:

∂L

∂qi
− d

dt

∂L

∂q̇i
+
∑
k

λk(t)
dfk
dqj

= 0

Which turns into the vector equation:

−∇U −Mq̈ +
∑
k

λk(t)
dfk
dq

= 0

Where the first two terms should sum to a constant under the same assumptions
used by virtual work (conservative forces). Using the same technique as used
for the velocity constraint equations, the equations of motion for the system can
be expressed using the Jacobians of the constraint functions. First substitute
in the generalized force Q, then re-write the last term using the gradient of the
constraint function:

Q−Mq̈ +
∑
k

λk(t)∇fk = 0

Remove the sum by changing the last term to a matrix product:

Q−Mq̈ + JTf λ = 0

Then re-arrange the equation to make it explicit:

Mq̈ = Q+ JTf λ

It can be seen that this equation is simply D’Alembert’s equation in generalized
coordinates. Finally, if the constraint does no work (as in the principle of virtual
work), and therefore its instantaneous power vanishes:

F (c) · v = (JTf λ)T q̇ = λTJf q̇ = 0

So to simulate conservative geometric constraints, the following equations can
be solved using a suitable numerical method:

Mq̈ = Q+ JTf λJf q̇ = ζ

Where ζ is some positional error term compensating for the fact that the con-
straints only correct velocities [Cat05]:

ζ = −βC

5

Where C is the current spatial deviation from the constraint. This is Baum-
gartes stabalization scheme for non-holonomic constraints [BL07]:

Jf q̇ + βC = 0

Ċ + βC = 0

Which when integrated causes the error (the value of C) to decay exponentially.

2.6 LCP Formulation

For inequality constraints, the signed magnitude of the constraint force is subject
to minimum and maximum bounds:

λ− ≤ λ ≤ λ+

When λ− = 0 and λ+ = ∞ (as in the case of contact forces), the constraint
can be stated as the following Linear Complementarity Problem (LCP) [AP97,
eq. 10], taking into account the Baumgarte term:

Jq̇ ≥ ζ compl. to λ ≥ 0

For non-trivial bounds on the Lagrangian multiplier (such as the bounds for
friction constraints), the problem becomes a Mixed Linear Complementarity
Problem (MLCP).

For example, a contact constraint should never push an object through the
ground plane (see Generalized Sclerenomic Constraints). The generalized accel-
eration vector for an object can be approximated using Euler integration:

q̈ ≈ q̇2 − q̇1
∆t

Which leads to the following equation [Cat05] for equality constraints:

A = JM−1JT

b =
1

∆t
ζ − J

(
M−1Q+

1

∆t
q̇1

)
Aλ = b

And the equivalent MLCP problem for general inequality constraints [Erl05,
p. 53]:

w = Aλ− b
λ− ≤ λ ≤ λ+

Where for each element of λ and the equation itself, one of the three conditions
holds:

λi = λ− , wi ≥ 0

λi = λ+ , wi ≤ 0

λ− < λ < λ+ , wi = 0

6

2.7 Contact Caching

To create a more numerically stable simulation, contacts are cached after they
are solved. Using an implicit equispatial KD-tree in the model-space of each
rigid body, previous multiplier values can be stored and retrieved. For each point
in model-space, KD code can be calculated as a 32-bit int using the following
algorithm:

int GetKDCode(AABB box , Vector po int)
int code = 0
Vector N[3] = { Vector (1 , 0 , 0) , Vector (0 , 1 , 0) , Vector (0 , 0 , 1) }
Vector C(box . c en t e r)

for (int b i t = 0 ; b i t < 32 ; b i t++)
f loat div = f loat (1 << (b i t / 3))
i f (N[b i t % 3] ∗ (po int − C) >= 0.0 f)

code = code | (1 << b i t)
C[b i t % 3] += box . ex t ent s [b i t % 3] / div ;

else
C[b i t % 3] −= box . ex t ent s [b i t % 3] / div ;

end i f
end for

return code ;
end

For each of 32 planes, the test point is classified as being in the positive or nega-
tive halfspace. Depending on the result at each point, the current bit of the KD
code is either a 0 or a 1, and the center point (the point through which the test
plane passes) is updated. The result corresponds to a discrete element within
the objects model-space. This result is non-unique, but since contacts are being
cached (and all objects are assumed to be convex), adjacent force multipliers
will be similar (continuity).

The smallest representable volume can be given in terms of the number of bits.
First, calculate how many times the d-th dimension divides (where b is the total
number of bits and d is a number from 1 to 3):

f(b, d) =

b−1∑
i=0

δi mod 3, d−1

Where δ is the Kronecker delta and f accumulates 1 every time imod3 = d− 1.
Since the dimensions are cut in half each time this condition is true, for the dth

dimension originally of length Ld, the new length is:

L
′

d =
Ld

2f(b,d)

7

Which makes the total volume in three dimensions:

V
′

=

3∏
d=1

L
′

d

=

3∏
d=1

Ld
2f(b,d)

= V

3∏
d=1

1

2f(b,d)

= 2(−
∑b−1

i=0 f(b,d))V

= 2−bV

Since:

3∑
d=1

f(b, d) =

3∑
d=1

b−1∑
i=0

δi mod 3, d−1

=

b−1∑
i=0

3∑
d=1

δi mod 3, d−1

=

b−1∑
i=0

1

= b

For 32 bits, the dimensions of the region are:

L
′

1 × L
′

2 × L
′

3 =
L1

211
× L2

211
× L3

210

Each cached constraint is indexed by a key containing four values: the index of
object A, the KD code for object As contact point, the index of object B, and the
KD code for object Bs contact point. Each entry consists of the last calculated λ
value and an age value. The age is incremented at the end of the solver update,
and set to 0 when a new value is calculated. Then, all cached contacts older
than some ”stale” value (in this case, 10 iterations) are removed. This prevents
the contact cache from growing too large as well as deleting potentially useless
values (for example, if an object bounces, then makes contact again 15 frames
later).

2.8 Inertia and Mass Calculation

Since all objects in the simulation are convex, mass calculation is relatively
straightforward, and done using the fact that the object can be decomposed

8

into pyramidal sections and the geometric barycenter is inside the objects hull:

O =
1

N

∑
j

Xj

Ai =
1

2
‖(Qi − Pi)× (Ri − Pi)‖

hi = ‖1

3
(Pi +Qi +Ri)−O‖

m = ρ
∑
i

1

3
Aihi

Where ρ is the constant density and the height hi of each right tetrahedron is
the distance from the centroids base to the geometric barycenter of the object.
Note that since the mass is distributed evenly the geometric barycenter is also
the center of mass.

The moment of inertia is calculated using the standard inertial tensor formu-
lation [TM04, p. 417] with the mass moved outside because of the assumed
uniform mass:

Iij = m
∑
α

(
δij
∑
k

x2α,k − xα,ixα,j

)
Where δij = 1 when i = j (0 otherwise), indexes each particle in the system,
and x is relative to the center of mass.

To make inversion of the inertial tensor efficient, it must be in a diagonal form.
There are two commonly used approaches: to diagonalize the inertial tensor
by finding the eigenvalues, or to calculate the inertia in a coordinate frame ap-
proximately aligned with the inertial reference frame and simply discard the
off-diagonal elements (which has been observed to simulate sufficiently regular
objects realistically). This implementation uses the second approach, as real-
time recalculation is desired for object fragments after fracturing occurs.

3 Plastic Fracturing

3.1 Convexity Limitations

For the purpose of this simulation, all bodies considered are convex. In the
case of a simulation where this is not the case, the mesh may be embedded
in higher-resolution objects with different topologies, similar to [CGC+02] with
the difference being that the embedding mesh is a convex hull, not a control
lattice.

3.2 Algorithm Overview

The splitting algorithm can be broken into the following stages:

9

• Split Stage – The mesh is split along a plane using standard triangle
clipping.

• Repair Stage – The holes on the two resulting meshes are capped.

• Build Objects Stage – Determine which meshes form valid objects, gener-
ate physics/collision components, and add the objects to the simulation.

3.3 Mesh Format

All meshes are stored in a simple indexed format with per-vertex attributes.
The basic structures are:

Mesh
Array<Triangle> t r i a n g l e s
Array<Vertex> ve r t s

Tr iang l e
int index [3] // indexes in to the v e r t s array

Vertex
Vector p o s i t i o n
Vector normal
Vector c o l o r

3.4 Splitting Stage

For all fractures considered, the problem is reduced to clipping a convex object
against a plane. This typically employs standard triangle clipping, as described
by [Eri05].

All triangles are passed through the clipping algorithm, resulting in two meshes
being created. These meshes are referred to as the front mesh (in the positive
half-space of the clipping plane) and the back mesh (in the negative half-space).
To avoid vertex aliasing (multiple vertices with the same location), connectivity
information is re-constructed for both meshes during the clipping phase.

3.4.1 Connectivity Table Method

To build the mesh, a table is used to look up (or create) the vertex index using
the index from the old mesh. Two cases are handled: original mesh vertices and
newly-created vertices resulting from a triangle being clipped against a plane
(i-verts).

For regular vertices, the original vertex array (M, corresponding to the old
mesh) is mapped to the vertex arrays (A and B, corresponding to the new

10

meshes) through two tables. For i-verts, an undirected edge is constructed from
the edge being clipped (the vertex indices are swapped if necessary to make the
first index the smaller of the two) and used as a key to store/retrieve the indices
for mesh A and mesh B.

// I f V (at index Mv) i s be ing i n s e r t e d in to a s i n g l e mesh
// V i s the o ld v e r t
// Mv i s the index o f the o ld v e r t
// A i s the new ve r t e x array
// MtoA i s the map between ve r t i nd i c e s
int In se r tRegu la rVer t (Vertex V, int Mv, Array<Vertex>& A,

Map<int , int>& MtoA)
int Av
i f (Mv in keys o f MtoA)

Av = MtoA[Mv]
else

Av = A. S i z e ()
A.Add(V)
MtoA[Mv] = Av

end i f
return Av

end

// I f V (newly−crea ted) i s to be i n s e r t e d in to A and B
// V i s the new ve r t
// A and B are the new ve r t e x arrays
// e i s the und irec ted edge from the edge be ing c l i p p ed
// edgeToIndex maps und irec ted edges to i nd i c e s f o r A and B
(int , int) InsertNewVert (Vertex V, Array<Vertex>& A,

Array<Vertex>& B, Edge e ,
Map<Edge , (int , int)>& edgeToIndex)

int Av, Bv
i f (e in keys o f edgeToIndex)

Av = edgeToIndex [e] . f i r s t
Bv = edgeToIndex [e] . second

else
Av = A. S i z e ()
Bv = B. S i z e ()
A.Add(V)
B.Add(V)
edgeToIndex [e] = (Av, Bv)

end i f
return (Av, Bv)

end

3.5 Repair Stage

In the repair stage, the meshes resulting from the split stage are capped with a
triangle fan. If all the vertices classified as inside the clipping plane are recorded
during the splitting stage, determining the fan becomes much more efficient.

11

3.5.1 Hole-Finding Algorithm

The hole-finding algorithm takes a mesh and returns a set of boundaries, which
are in the form of a list of counterclockwise-ordered vertex indices. Each bound-
ary is assumed to be closed (cyclic). The algorithm presented finds a list of bor-
ders using the simple fact that for any edge in a closed, non-degenerate mesh,
there will be two neighboring triangles. In its simplest form (no limitations on
vertices considered):

Array<Boundary> FindHoleBorders (Mesh mesh)
Map<int , Array<int>> vertsToVerts = BuildVertsToVerts (mesh)
Array<Edge> di rectedEdges = Bui ldDirectedEdges (mesh , vertsToVerts)
Array<Boundary> boundaryList = CreateBoundaryList (d i rec tedEdges)
return boundaryList

end

The first step builds the vertsToVerts map, which is an efficient representation
of the meshs graph. Note that a Dictionary is not required for the vertsToVerts
map in this simple case; it is used here to remain consistent with the vertex-
limited form of the algorithm.

Map<int , Array<int>> BuildVertsToVerts (Mesh mesh)
foreach (Tr iang l e t in mesh)

foreach (Edge (a , b) in t)
vertsToVerts [a] . Add(b)

end for
end for

end

After the vertsToVerts map is built, a list of missing directed edges is built. For
each known edge, if the opposite edge does not exist, add it to the list.

Array<Edge> Bui ldDirectedEdges (Mesh mesh ,
Map<int , Array<int>> vertsToVerts)

Array<Edge> di rectedEdges

foreach (Edge edge in each t r e e in vertsToVerts)
i f (vertsToVerts does not conta in the oppos i t e edge)

Add the oppos i t e edge to d i rec tedEdges
end for

return di rectedEdges
end

Finally, the directed edges are turned into a list of closed boundaries. For
non-degenerate convex meshes, dividing the mesh against a splitting plane will
always produce non-degenerate boundaries.

12

Array<Boundary> CreateBoundaryList (Array<Edge> di rectedEdges)
// Set to t rue f o r each c l o s ed boundary
Array<bool> i sC l o s ed

foreach (Edge edge in d i rectedEdges)
int frontMatch = −1
int backMatch = −1

for (int i = 0 ; i < boundaryList . S i z e () ; i++)
// Do not append/prepend to c l o s ed boundaries
i f (! i sC l o s ed [j])

i f (boundaryList [i] . F i r s t () == edge . f i r s t)
frontMatch = i

i f (boundaryList [i] . Last () == edge . second)
backMatch = i

end i f
end for

AddEdgeToBoundaries (frontMatch , backMatch , boundaryList ,
i sC losed , edge)

end for

// For v a l i d boundaries to be formed , a l l boundaries must
// be marked c l o s ed at t h i s po in t

end

AddEdgeToBoundaries is the merge step, creating and joining boundaries based
on index matches. The flow of the function is based on the connectivity between
the current edge and the boundaries:

void AddEdgeToBoundaries (int frontMatch ,
int backMatch ,
Array<Boundary>& boundaryList ,
Array<bool>& isClosed ,
Edge edge)

i f (the re were matches for both f r on t and back)
i f (they are unique)

The s p e c i f i e d edge j o i n s to e x i s t i n g boundaries ,
Merge those boundar ies and the edge

else i f (they are not unique)
The s p e c i f i e d edge c l o s e s an e x i s t i n g boundary ,
Mark the boundary as c l o s ed

end i f
else i f (the re i s only one match)

Append the edge to the matching boundary
else the re are no matches

Create a new boundary conta in ing only the edge
end i f

end

A simple optimization to the algorithm is limiting the vertices considered when
building the vertToVerts map.

13

For each mesh, after the ordered boundaries are generated, a triangle fan is
created from the boundary. The resulting meshes are convex and closed.

3.6 Build Objects Stage

To maintain a numerically stable simulation, only non-degenerate meshes (meshes
with four or more vertices) are kept. Other criteria can be used to determine
what constitutes a valid mesh, such as culling small volumes/etc.

Once the resulting meshes have been determined, game objects can be con-
structed. Physics data and collision components are generated using the meth-
ods covered in this paper. The resulting objects are translated to match the
pre-split object, then new vertex normals are generated for lighting.

References

[AP97] M. Anitescu and F.A. Potra. Formulating dynamic multi-rigid-
body contact problems with friction as solvable linear complemen-
tary problems. 1997.

[BL07] O. Bauchau and A. Laulusa. Review of contemporary approaches
for constraint enforcement in multibody systems. page 3, 2007.

[Cat05] E. Catto. Iterative dynamics with temporal coherence. June 5, 2005.

[Cat09] E. Catto. Modelling and solving constraints. page 13, 2009.

[CGC+02] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovic. In-
teractive skeleton-driven dynamic deformations. page 1, 2002.

[Eri05] C. Ericson. Real time collision detection. pages 367–373, 2005.

[Erl05] K. Erleben. Stable, robust, and versatile multibody dynamics ani-
mation. April 2005.

[Gol02] H. Goldstein. Classical mechanics, 3rd ed. pages 17–19, 2002.

[Lan70] C. Lanczos. The variational principles of mechanics. page 120, 1970.

[Mil04] A. Miller. A cracking algorithm for exploding objects. May 2004.

[Sha01] A. A. Shabana. Computational dynamics, 2nd ed. page 133, 2001.

[Sha05] A. A. Shabana. Dynamics of multibody systems, 3rd ed. pages
91–92, 2005.

[TM04] S. Thornton and J. Marion. Classical dynamics of particles and
systems, 5th ed. 2004.

14

